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INTEGRATION OF PROACTIVE AND REACTIVE APPROACHES 
TO SCALING IN KUBERNETES

This article is devoted to developing a method for integrating proactive and reactive approaches to 
automate scaling computing resources in a Kubernetes cluster. A proactive approach allows you to scale 
cluster resources in advance and release them only after passing the peak load, which reduces the risk of service 
quality deterioration and significantly reduces unprofitable resource reservation. However, the main drawback 
of this method is the inability to adapt to abnormal loads directly during operation. Although the reactive 
approach is less effective in typical situations, it continues functioning in the standard mode under abnormal 
loads. Therefore, a hybrid approach – which includes reactive and proactive components – will effectively 
manage resources under typical loads and continue functioning in abnormal conditions. This paper considers 
a solution for automatic horizontal scaling, which includes a developed proactive component in combination 
with an existing solution for reactive horizontal scaling in Kubernetes, namely the Horizontal Pod Autoscaler. 
This work describes problems that may arise when developing hybrid solutions, in particular, the problem of 
determining the moment of switching between components, and possible options for their solution are given. 
Experiments are conducted in the article to verify the developed solution. The first experiment shows the ability 
to move to proactive management if the required accuracy of predictions is obtained. Also, this experiment 
allows you to compare the proactive and reactive approaches with each other in the context of service quality 
and unprofitable resource reservation. The second experiment demonstrates the ability to detect abnormal 
workload and switch to the reactive component. The speed of reaction to anomalies and the overall impact on 
service quality indicators are also evaluated.

Key words: dynamic management of computing resources, proactive scaling, reactive scaling, Kubernetes, 
Horizontal Pod Autoscaler.

Formulation of the problem. Proactive scaling 
methods are more effective than reactive scaling 
methods in the context of managing computing 
resources in information systems for several 
reasons [1]. First, this approach allows you to 
scale applications in advance during peak loads 
by analyzing historical data, which significantly 
reduces the risk of deterioration in quality of service 
(QoS). Secondly, this approach significantly reduces 
overprovisioning due to a more accurate calculation 
of the required amount of computing resources and 
advance planning of downscaling. When using the 
reactive approach, upward scaling is performed when 
the load peak occurs [2]. Given the time required to 
deploy and initialize the application, this can lead to 
a temporary critical drop in service quality, including 
complete failure. However, the proactive approach, 
unlike the reactive one, is not self-sufficient and has 
several prerequisites for effective operation.

Any proactive scaling solution is based on time-
series analysis methods that identify seasonality, 

trends, recurring patterns, and other features of the 
target application’s load. The presence of anomalies 
in historical data, which can be caused by data 
loss, network problems, or denial of service, can 
significantly affect the accuracy of predictions. 
In addition, a proactive scaler cannot perform its 
functions when an abnormal load occurs directly 
during operation. One possible solution to this 
problem is to use reactive scaling in situations 
where the proactive approach is ineffective. When 
integrating these two approaches, several tasks need 
to be solved. In particular, it is necessary to define an 
indicator that will signal that the proactive component 
is ineffective at some point in time, and it is necessary 
to apply the reactive one [3]. It is also necessary to 
define an indicator for reverse switching from reactive 
to proactive. In addition, it is necessary to ensure that 
the reactive component is activated quickly to reduce 
the duration of QoS degradation. 

This paper focuses on the problem of 
combining reactive and proactive approaches to 
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scaling. Nowadays, Kubernetes provides all the 
necessary tools and capabilities for automating 
resource management processes and is the de facto 
orchestration standard, so potential solutions to this 
problem are explicitly considered for the Kubernetes 
environment. The purpose of this paper is to 
improve the characteristics of proactive and reactive 
scaling solutions by integrating them into a single 
subsystem of computing resource management.

Analysis of recent research and publications. 
In [4], the authors present the CloudScale solution 
for managing computing resources for multi-tenant 
cloud systems. This solution includes both proactive 
and reactive components that can work together or 
separately in the respective modes of operation. 
The predictive component is based on fast Fourier 
transforms to find similar load patterns, after which 
Markov chains are applied to identify the current 
state of the application and the required transition. 
The reactive component, in turn, calculates the error 
between the current amount of reserved resources 
and the required amount, based on which the amount 
of allocated resources is adjusted. Thus, the reactive 
component performs a corrective function. On 
different datasets, these components in pairs have 
shown better results than each of them separately.

In another paper [5], the authors propose another 
option for integrating the reactive and proactive 
approach, namely, scaling up is reactive, and scaling 
down is proactive. The reactive component constantly 
analyzes the current metrics of the speed of response 
to requests. If these metrics violate the Service Level 
Agreement (SLA), upward scaling occurs. The 
proactive component, which is based on a regression 
model, prevents the premature release of reserved 
resources. The results of experiments conducted on 
synthetic data demonstrate the ability of this solution 
to adapt to simple load patterns.

A similar approach for horizontal scaling is 
proposed in [6, 7]. In this paper, two independent 
controllers are used. The reactive controller is 
responsible for scaling up, and the proactive 
controller is responsible for scaling down. However, 
in these works, the authors conclude that if there is 
a significant period of application initialization, the 
reactive controller loses its effectiveness, and the 
proactive approach shows much better results.

The works on hybrid scaling in Kubernetes are 
currently not widespread [8]. Therefore, this topic 
requires more research.

Outline of the main material of the study. The 
developed solution for managing computing resources 
includes reactive and proactive components. To 

simplify the experiments and presentation of the 
results, only CPU time management and horizontal 
scaling are considered in this paper.

The application developed in this paper solves 
the problem of horizontal scaling of applications in 
Kubernetes, which is to manage the number of replicas 
of a selected application to ensure the required level 
of QoS metrics and minimize wasted resources. Some 
application X, which at any time t has a given number 
of replicas Rt – X1...XRt that process requests. The total 
amount of CPU time required to process requests at 
any given time t is described by the load function 
WCPU(t). When scaling horizontally, the application X 
has constant requests CX for CPU time. In this case, 
at any time t, the following equality must be satisfied 
to minimize unprofitable reservation of CPU time and 
maintain the required level of QoS:

Rt * CX = WCPU(t).                         (1)
In this work, the proactive approach is used as 

the main one since, provided that high accuracy 
predictions are obtained, it allows the application 
to scale up prematurely to ensure the required level 
of service quality, as well as to release the reserved 
resources only after the peak loads are over. However, 
in cases where the accuracy of the predictions is not 
high, the proactive component significantly loses 
its effectiveness. The reactive component should 
be activated if the accuracy of the predictions is 
critically low and, accordingly, transfer control to 
the proactive component when the required accuracy 
is reached. An essential characteristic of both 
components is the ability to work in the observation 
mode – to collect and process metrics and calculate 
the required number of replicas but not apply the 
obtained values to the application. For example, if the 
accuracy of predictions drops, this will allow you to 
quickly switch to reactive management and continue 
processing requests as usual.

One of the main problems studied in this paper 
is determining when to transfer control between 
components. While there are no prerequisites for a 
reactive approach, a proactive approach depends on 
the accuracy of the predictions made. If anomalies 
appear in the load pattern, the prediction algorithm 
may lose accuracy. An indicator of the need to switch 
from a proactive to a reactive approach can be [9]:

1. Underestimation or significant overestimation 
of the number of application replicas over several 
iterations which allows you to quickly identify the 
difference between the actual workload and the 
forecast. Verification over several iterations, although 
it increases the response time, allows you to be sure 
of the final result.
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2. Low accuracy of the prediction model 
obtained by splitting historical data into training 
and evaluation parts. In order to quickly detect an 
abnormal situation, this approach requires constant 
retraining and re-evaluation of the model, which can 
require significant computing resources and time.

3. Drop in QoS metrics, such as response time. 
The difficulty of this approach lies in finding a metric 
that unambiguously identifies problems with resource 
allocation.

In this paper, we use the first approach because 
it is easy to implement and allows us to quickly 
identify and fix the problem of dynamic allocation of 
computing resources.

When a given solution is initialized to automate the 
scaling of an application, previous resource utilization 
metrics may not be available. In this case, due to the 
impossibility of applying a proactive approach, the 
management is transferred to the reactive component.

The proactive component is based on the Prophet 
prediction algorithm. Prophet [10] is a time series 
prediction library developed by Facebook. The main 
goal of the development was to create a simple, 
transparent, and understandable model-generation 
algorithm that would allow us to obtain reliable 
predictions quickly.

This algorithm is based on an additive regression 
model that has several components:

y(t) = g(t) + s(t) + h(t) + e(t),                (2)
where g(t) is the trend component, s(t) is the seasonal 
component, h(t) is the anomalous component, and 
e(t) is the error function. In addition to the additive 
regression model, Prophet also uses a Fourier 
transform.

Historical data on resource utilization is obtained 
by querying the Prometheus server. To get resource 
utilization metrics, in particular CPU, the query of 
the form sum(rate(container_cpu_usage_seconds_
total{container !=""}[1m])) by (pod) is used. To get 
the currently specified requests, the Kubernetes API 
is used, namely the sum(spec.container[].requests.
cpu) attribute in the deployment manifest [11].

The advantages of this model include the ability 
to work with a variety of time series, the ability to 
work efficiently with large data sets and missing data, 
and flexibility in customization. This algorithm has 
the ability to detect seasonality, trends, and anomalies 
in time series automatically.

When developing a solution for horizontal 
scaling, an additional parameter must be taken into 
account, namely the application initialization time. 
This value can be determined automatically, but 
since it will have a significant impact on the scaler’s 

performance, it should be set by the user. For example, 
when initializing a web application, it is necessary to 
establish connections to other services and databases. 
Also, Kubernetes needs additional time to place a pod 
on a node, obtain an image, and perform readiness 
checks. Therefore, this solution allows you to set the 
initializationTime parameter, which the proactive 
component uses to plan upward scaling.

For reactive scaling, HPA is used – a built-in solution 
for automating horizontal scaling in Kubernetes 
[12]. HPA receives system metrics of resource 
utilization from the metrics-server. The main setting 
targetAverageValue or targetAverageUtilization 
is responsible for the desired load per application 
replica. HPA calculates the current load value as 
the average value among all the pods of the target 
deployment in the Running status. The controller 
continuously monitors the status of the pods and the 
current average load, calculating the desired number of 
replicas with desiredReplicas = ceil[currentReplicas 
* ( currentMetricValue / targetMetricValue )]. If the 
actual and desired values differ, the application is 
scaled. HPAs may have a cooldown period to prevent 
rapid, oscillating scaling decisions. During this 
period, no further scaling decisions are made. Also, 
this component allows you to configure the minimum 
and maximum values of the number of replicas in 
order to avoid over-scaling or under-scaling.

To minimize the switching time from the proactive 
to the reactive component, HPA operates in the 
observation mode, which is achieved by setting the 
selectPolicy parameter to disabled for the scaleDown 
and scaleUp control policies.

While the reactive component is running, the 
proactive component constantly collects historical 
usage data and calculates the optimal number of 
replicas. If, within a certain number of iterations, which 
can be configured, the calculated values correspond 
to the actual needs, then control is transferred to the 
proactive component. Accordingly, if the provided 
values of the number of replicas are insufficient or 
significantly exceed the required number (>50%), the 
reverse operation is performed.

Experiments. To evaluate the quality of the 
developed solution, two experiments were conducted 
on a minikube cluster [13], including one node with  
12 processor cores and 16 GB of RAM. All 
applications are hosted on the same physical machine. 

The workload is generated using locust, which 
allows you to send requests according to a predefined 
scenario [14]. The test application can be scaled both 
horizontally and vertically. For each received request, 
some CPU-intensive task is performed.
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The test application has a query limit of  
200 millicores. In addition, when scaling reactive, 
setting limits higher than requests is essential. On 
the one hand, this may affect other applications on 
the same node, but it is a general practice not to load 
nodes with more than 80–90% of the 
maximum capacity of computational 
resources. Setting limits allows 
you to better estimate the number 
of application replicas required in 
cases with a rapidly growing load. 
Otherwise, the application will be 
significantly limited in the use of CPU 
time, which will significantly degrade 
QoS and interfere with the assessment 
of the required number of application 
replicas. In the case of limitations on 
setting limits, it is necessary to take 
into account an additional metric that 
shows the throttling of the application, 
which is not always correct. In this 
experiment, the limits were set  
at 250 millicores.

To approximate real-world 
applications, the test application 
requires a 10-second initialization 
interval. This is necessary for image 
download, volume attachment, and 
initialization of the main application 
components. Since minikube is used 
for testing, all the necessary data is 
contained on one machine, so there 
are no network delays.

To improve the representativeness 
of the experiments, we also further 
reduced the global period for 
collecting system metrics by setting 
the metricResolution value to  
15 seconds as kubelets work with 
same frequency. Also, the scaleUp 
and scaleDown scaling policies in 
HPA were edited to reduce the reaction 
time to changes in workloads. 

The developed solution is launched 
in the first experiment without any 
previous history. The load period 
is 5 minutes and varies from 20 to  
100 requests per second. Figure 1 
shows the results of the experiment. In 
the beginning, resource management is 
performed by the reactive component, 
which is why there are high response 
times at the peak moments. After three 

 

Fig. 1. The example of the transition from reactive  
to proactive management

 

Fig. 2. An example of switching from proactive to reactive control  
with an atypical load pattern

periods of seasonal load, the proactive component is 
able to accurately calculate the required number of 
replicas and takes over. Starting from the 800th second 
of the experiment, the response time at the moment of 
peaks onset decreases significantly, which corresponds 
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to the time when control is transferred to the proactive 
component.

It’s worth noting that the 95th percentile response 
time with proactive scaling is 210% better than with 
reactive scaling. In addition, proactive scaling used 
11% less CPU time. 

The second experiment demonstrates the ability to 
reverse the transition. Initially, the control is performed 
by the reactive component, but after the appearance 
of an atypical load, the control is transferred to the 
reactive component. The results are shown in Figure 2.

At about 950 seconds, an atypical load arrives, 
causing a critical drop in QoS. After several iterations 
of the proactive component, which missed the 
required number of replicas, a decision is made to 
transfer control to the reactive component. After 
that, scaling up to 7 pods immediately occurs, which 

should be enough to process all received requests. 
The response time, in this case, is about 20 seconds. 
At this interval, this atypical situation led to a 
significant increase in the 95th percentile of response 
time – from 80 milliseconds to 173. However, given 
that such abnormal situations are generally rare, the 
impact on the overall response time is not significant.

Conclusions. In this paper, we have demonstrated 
a solution for hybrid scaling in Kubernetes. Although 
the performance of the proactive approach is much 
better – 210% less response time and 11% less 
unprofitable reservation of computing resources – 
it cannot perform its functions correctly in atypical 
situations, as demonstrated in the second experiment. 
A method for identifying the need to switch between 
components was proposed. In future work, this 
approach can be applied for vertical scaling.
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Омельченко В.В., Ролік О.І. ІНТЕГРАЦІЯ ПРОАКТИВНОГО І РЕАКТИВНОГО ПІДХОДІВ 
ДО МАСШТАБУВАННЯ В KUBERNETES

Робота присвячена розробці методу інтеграції проактивного і реактивного підходів для 
автоматизація процесу масштабування обчислювальних ресурсів у кластері Kubernetes. Проактивний 
підхід дозволяє завчасно масштабувати ресурси кластеру і звільняти їх лише після проходження 
піку навантаження, що зменшує ризик погіршення якості обслуговування і значно зменшує збиткове 
резервування ресурсів. Проте, головним недоліком такого методу є неможливість адаптації до 
аномальних навантажень безпосередньо під час роботи. Хоча реактивний підхід і є менш ефективним 
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в типових ситуаціях, при аномальних навантаженнях продовжує функціонувати в стандартному 
режимі. Тому гібридний підхід – який включає реактивну і проактивну складові – дозволить ефективно 
розподіляти ресурси при типових навантаженнях і продовжувати функціонування в аномальних 
умовах. В роботі розглядається рішення для автоматичного горизонтально масштабування, яке 
включає розроблений проактивний компонент в поєднанні з існуючим рішенням для реактивного 
горизонтального масштабування в Kubernetes, а саме Horizontal Pod Autoscaler. В даній роботі 
проаналізовано проблеми, які можуть виникнути при розробці гібридних рішень, зокрема, проблема 
визначення моменту перемикання між компонентами та наводяться можливі варіанти їх вирішення. 
В статті проводяться експерименти для перевірки розробленого рішення. Перше дослідження показує 
здатність переходити до проактивного управління, якщо необхідна точність передбачень отримана. 
Також даний експеримент дозволяє порівняти проактивний і реактивний підхід між собою в контексті 
якості обслуговування та збиткового резервування ресурсів. Друге дослідження демонструє здатність 
визначати аномальне навантаження і вмикати реактивний компонент. Також оцінюється швидкість 
реагування на виникнення аномалій і загальний вплив на показники якості обслуговування.

Ключові слова: динамічне управління обчислювальними ресурсами, проактивне масштабування, 
реактивне масштабування, Kubernetes, Horizontal Pod Autoscaler.


