
193

Інформатика, обчислювальна техніка та автоматизація

UDC 004.94
DOI https://doi.org/10.32782/2663-5941/2023.5/30

Omechenko V.V.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Rolik O.I.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

INTEGRATION OF PROACTIVE AND REACTIVE APPROACHES
TO SCALING IN KUBERNETES

This article is devoted to developing a method for integrating proactive and reactive approaches to
automate scaling computing resources in a Kubernetes cluster. A proactive approach allows you to scale
cluster resources in advance and release them only after passing the peak load, which reduces the risk of service
quality deterioration and significantly reduces unprofitable resource reservation. However, the main drawback
of this method is the inability to adapt to abnormal loads directly during operation. Although the reactive
approach is less effective in typical situations, it continues functioning in the standard mode under abnormal
loads. Therefore, a hybrid approach – which includes reactive and proactive components – will effectively
manage resources under typical loads and continue functioning in abnormal conditions. This paper considers
a solution for automatic horizontal scaling, which includes a developed proactive component in combination
with an existing solution for reactive horizontal scaling in Kubernetes, namely the Horizontal Pod Autoscaler.
This work describes problems that may arise when developing hybrid solutions, in particular, the problem of
determining the moment of switching between components, and possible options for their solution are given.
Experiments are conducted in the article to verify the developed solution. The first experiment shows the ability
to move to proactive management if the required accuracy of predictions is obtained. Also, this experiment
allows you to compare the proactive and reactive approaches with each other in the context of service quality
and unprofitable resource reservation. The second experiment demonstrates the ability to detect abnormal
workload and switch to the reactive component. The speed of reaction to anomalies and the overall impact on
service quality indicators are also evaluated.

Key words: dynamic management of computing resources, proactive scaling, reactive scaling, Kubernetes,
Horizontal Pod Autoscaler.

Formulation of the problem. Proactive scaling
methods are more effective than reactive scaling
methods in the context of managing computing
resources in information systems for several
reasons [1]. First, this approach allows you to
scale applications in advance during peak loads
by analyzing historical data, which significantly
reduces the risk of deterioration in quality of service
(QoS). Secondly, this approach significantly reduces
overprovisioning due to a more accurate calculation
of the required amount of computing resources and
advance planning of downscaling. When using the
reactive approach, upward scaling is performed when
the load peak occurs [2]. Given the time required to
deploy and initialize the application, this can lead to
a temporary critical drop in service quality, including
complete failure. However, the proactive approach,
unlike the reactive one, is not self-sufficient and has
several prerequisites for effective operation.

Any proactive scaling solution is based on time-
series analysis methods that identify seasonality,

trends, recurring patterns, and other features of the
target application’s load. The presence of anomalies
in historical data, which can be caused by data
loss, network problems, or denial of service, can
significantly affect the accuracy of predictions.
In addition, a proactive scaler cannot perform its
functions when an abnormal load occurs directly
during operation. One possible solution to this
problem is to use reactive scaling in situations
where the proactive approach is ineffective. When
integrating these two approaches, several tasks need
to be solved. In particular, it is necessary to define an
indicator that will signal that the proactive component
is ineffective at some point in time, and it is necessary
to apply the reactive one [3]. It is also necessary to
define an indicator for reverse switching from reactive
to proactive. In addition, it is necessary to ensure that
the reactive component is activated quickly to reduce
the duration of QoS degradation.

This paper focuses on the problem of
combining reactive and proactive approaches to

Том 34 (73) № 5 2023194

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

scaling. Nowadays, Kubernetes provides all the
necessary tools and capabilities for automating
resource management processes and is the de facto
orchestration standard, so potential solutions to this
problem are explicitly considered for the Kubernetes
environment. The purpose of this paper is to
improve the characteristics of proactive and reactive
scaling solutions by integrating them into a single
subsystem of computing resource management.

Analysis of recent research and publications.
In [4], the authors present the CloudScale solution
for managing computing resources for multi-tenant
cloud systems. This solution includes both proactive
and reactive components that can work together or
separately in the respective modes of operation.
The predictive component is based on fast Fourier
transforms to find similar load patterns, after which
Markov chains are applied to identify the current
state of the application and the required transition.
The reactive component, in turn, calculates the error
between the current amount of reserved resources
and the required amount, based on which the amount
of allocated resources is adjusted. Thus, the reactive
component performs a corrective function. On
different datasets, these components in pairs have
shown better results than each of them separately.

In another paper [5], the authors propose another
option for integrating the reactive and proactive
approach, namely, scaling up is reactive, and scaling
down is proactive. The reactive component constantly
analyzes the current metrics of the speed of response
to requests. If these metrics violate the Service Level
Agreement (SLA), upward scaling occurs. The
proactive component, which is based on a regression
model, prevents the premature release of reserved
resources. The results of experiments conducted on
synthetic data demonstrate the ability of this solution
to adapt to simple load patterns.

A similar approach for horizontal scaling is
proposed in [6, 7]. In this paper, two independent
controllers are used. The reactive controller is
responsible for scaling up, and the proactive
controller is responsible for scaling down. However,
in these works, the authors conclude that if there is
a significant period of application initialization, the
reactive controller loses its effectiveness, and the
proactive approach shows much better results.

The works on hybrid scaling in Kubernetes are
currently not widespread [8]. Therefore, this topic
requires more research.

Outline of the main material of the study. The
developed solution for managing computing resources
includes reactive and proactive components. To

simplify the experiments and presentation of the
results, only CPU time management and horizontal
scaling are considered in this paper.

The application developed in this paper solves
the problem of horizontal scaling of applications in
Kubernetes, which is to manage the number of replicas
of a selected application to ensure the required level
of QoS metrics and minimize wasted resources. Some
application X, which at any time t has a given number
of replicas Rt – X1...XRt that process requests. The total
amount of CPU time required to process requests at
any given time t is described by the load function
WCPU(t). When scaling horizontally, the application X
has constant requests CX for CPU time. In this case,
at any time t, the following equality must be satisfied
to minimize unprofitable reservation of CPU time and
maintain the required level of QoS:

Rt * CX = WCPU(t). (1)
In this work, the proactive approach is used as

the main one since, provided that high accuracy
predictions are obtained, it allows the application
to scale up prematurely to ensure the required level
of service quality, as well as to release the reserved
resources only after the peak loads are over. However,
in cases where the accuracy of the predictions is not
high, the proactive component significantly loses
its effectiveness. The reactive component should
be activated if the accuracy of the predictions is
critically low and, accordingly, transfer control to
the proactive component when the required accuracy
is reached. An essential characteristic of both
components is the ability to work in the observation
mode – to collect and process metrics and calculate
the required number of replicas but not apply the
obtained values to the application. For example, if the
accuracy of predictions drops, this will allow you to
quickly switch to reactive management and continue
processing requests as usual.

One of the main problems studied in this paper
is determining when to transfer control between
components. While there are no prerequisites for a
reactive approach, a proactive approach depends on
the accuracy of the predictions made. If anomalies
appear in the load pattern, the prediction algorithm
may lose accuracy. An indicator of the need to switch
from a proactive to a reactive approach can be [9]:

1. Underestimation or significant overestimation
of the number of application replicas over several
iterations which allows you to quickly identify the
difference between the actual workload and the
forecast. Verification over several iterations, although
it increases the response time, allows you to be sure
of the final result.

195

Інформатика, обчислювальна техніка та автоматизація

2. Low accuracy of the prediction model
obtained by splitting historical data into training
and evaluation parts. In order to quickly detect an
abnormal situation, this approach requires constant
retraining and re-evaluation of the model, which can
require significant computing resources and time.

3. Drop in QoS metrics, such as response time.
The difficulty of this approach lies in finding a metric
that unambiguously identifies problems with resource
allocation.

In this paper, we use the first approach because
it is easy to implement and allows us to quickly
identify and fix the problem of dynamic allocation of
computing resources.

When a given solution is initialized to automate the
scaling of an application, previous resource utilization
metrics may not be available. In this case, due to the
impossibility of applying a proactive approach, the
management is transferred to the reactive component.

The proactive component is based on the Prophet
prediction algorithm. Prophet [10] is a time series
prediction library developed by Facebook. The main
goal of the development was to create a simple,
transparent, and understandable model-generation
algorithm that would allow us to obtain reliable
predictions quickly.

This algorithm is based on an additive regression
model that has several components:

y(t) = g(t) + s(t) + h(t) + e(t), (2)
where g(t) is the trend component, s(t) is the seasonal
component, h(t) is the anomalous component, and
e(t) is the error function. In addition to the additive
regression model, Prophet also uses a Fourier
transform.

Historical data on resource utilization is obtained
by querying the Prometheus server. To get resource
utilization metrics, in particular CPU, the query of
the form sum(rate(container_cpu_usage_seconds_
total{container !=""}[1m])) by (pod) is used. To get
the currently specified requests, the Kubernetes API
is used, namely the sum(spec.container[].requests.
cpu) attribute in the deployment manifest [11].

The advantages of this model include the ability
to work with a variety of time series, the ability to
work efficiently with large data sets and missing data,
and flexibility in customization. This algorithm has
the ability to detect seasonality, trends, and anomalies
in time series automatically.

When developing a solution for horizontal
scaling, an additional parameter must be taken into
account, namely the application initialization time.
This value can be determined automatically, but
since it will have a significant impact on the scaler’s

performance, it should be set by the user. For example,
when initializing a web application, it is necessary to
establish connections to other services and databases.
Also, Kubernetes needs additional time to place a pod
on a node, obtain an image, and perform readiness
checks. Therefore, this solution allows you to set the
initializationTime parameter, which the proactive
component uses to plan upward scaling.

For reactive scaling, HPA is used – a built-in solution
for automating horizontal scaling in Kubernetes
[12]. HPA receives system metrics of resource
utilization from the metrics-server. The main setting
targetAverageValue or targetAverageUtilization
is responsible for the desired load per application
replica. HPA calculates the current load value as
the average value among all the pods of the target
deployment in the Running status. The controller
continuously monitors the status of the pods and the
current average load, calculating the desired number of
replicas with desiredReplicas = ceil[currentReplicas
* (currentMetricValue / targetMetricValue)]. If the
actual and desired values differ, the application is
scaled. HPAs may have a cooldown period to prevent
rapid, oscillating scaling decisions. During this
period, no further scaling decisions are made. Also,
this component allows you to configure the minimum
and maximum values of the number of replicas in
order to avoid over-scaling or under-scaling.

To minimize the switching time from the proactive
to the reactive component, HPA operates in the
observation mode, which is achieved by setting the
selectPolicy parameter to disabled for the scaleDown
and scaleUp control policies.

While the reactive component is running, the
proactive component constantly collects historical
usage data and calculates the optimal number of
replicas. If, within a certain number of iterations, which
can be configured, the calculated values correspond
to the actual needs, then control is transferred to the
proactive component. Accordingly, if the provided
values of the number of replicas are insufficient or
significantly exceed the required number (>50%), the
reverse operation is performed.

Experiments. To evaluate the quality of the
developed solution, two experiments were conducted
on a minikube cluster [13], including one node with
12 processor cores and 16 GB of RAM. All
applications are hosted on the same physical machine.

The workload is generated using locust, which
allows you to send requests according to a predefined
scenario [14]. The test application can be scaled both
horizontally and vertically. For each received request,
some CPU-intensive task is performed.

Том 34 (73) № 5 2023196

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

The test application has a query limit of
200 millicores. In addition, when scaling reactive,
setting limits higher than requests is essential. On
the one hand, this may affect other applications on
the same node, but it is a general practice not to load
nodes with more than 80–90% of the
maximum capacity of computational
resources. Setting limits allows
you to better estimate the number
of application replicas required in
cases with a rapidly growing load.
Otherwise, the application will be
significantly limited in the use of CPU
time, which will significantly degrade
QoS and interfere with the assessment
of the required number of application
replicas. In the case of limitations on
setting limits, it is necessary to take
into account an additional metric that
shows the throttling of the application,
which is not always correct. In this
experiment, the limits were set
at 250 millicores.

To approximate real-world
applications, the test application
requires a 10-second initialization
interval. This is necessary for image
download, volume attachment, and
initialization of the main application
components. Since minikube is used
for testing, all the necessary data is
contained on one machine, so there
are no network delays.

To improve the representativeness
of the experiments, we also further
reduced the global period for
collecting system metrics by setting
the metricResolution value to
15 seconds as kubelets work with
same frequency. Also, the scaleUp
and scaleDown scaling policies in
HPA were edited to reduce the reaction
time to changes in workloads.

The developed solution is launched
in the first experiment without any
previous history. The load period
is 5 minutes and varies from 20 to
100 requests per second. Figure 1
shows the results of the experiment. In
the beginning, resource management is
performed by the reactive component,
which is why there are high response
times at the peak moments. After three

Fig. 1. The example of the transition from reactive
to proactive management

Fig. 2. An example of switching from proactive to reactive control
with an atypical load pattern

periods of seasonal load, the proactive component is
able to accurately calculate the required number of
replicas and takes over. Starting from the 800th second
of the experiment, the response time at the moment of
peaks onset decreases significantly, which corresponds

197

Інформатика, обчислювальна техніка та автоматизація

to the time when control is transferred to the proactive
component.

It’s worth noting that the 95th percentile response
time with proactive scaling is 210% better than with
reactive scaling. In addition, proactive scaling used
11% less CPU time.

The second experiment demonstrates the ability to
reverse the transition. Initially, the control is performed
by the reactive component, but after the appearance
of an atypical load, the control is transferred to the
reactive component. The results are shown in Figure 2.

At about 950 seconds, an atypical load arrives,
causing a critical drop in QoS. After several iterations
of the proactive component, which missed the
required number of replicas, a decision is made to
transfer control to the reactive component. After
that, scaling up to 7 pods immediately occurs, which

should be enough to process all received requests.
The response time, in this case, is about 20 seconds.
At this interval, this atypical situation led to a
significant increase in the 95th percentile of response
time – from 80 milliseconds to 173. However, given
that such abnormal situations are generally rare, the
impact on the overall response time is not significant.

Conclusions. In this paper, we have demonstrated
a solution for hybrid scaling in Kubernetes. Although
the performance of the proactive approach is much
better – 210% less response time and 11% less
unprofitable reservation of computing resources –
it cannot perform its functions correctly in atypical
situations, as demonstrated in the second experiment.
A method for identifying the need to switch between
components was proposed. In future work, this
approach can be applied for vertical scaling.

Bibliography:
1. Omelchenko V. V., Rolik O.I. Automation of resource management In information systems based on

reactive vertical scaling. Адаптивні системи автоматичного управління. 2022. №41. P. 65–78.
2. Omelchenko V. V., Rolik O. I. Workloads prediction methods for proactive resource scaling in Kubernetes.

III International Scientific Symposium “Intelligent Solutions” (IntSol-2023). 2023.
3. Straesser M., Grohmann J., von Kistowski J., Eismann S., Bauer A. і Kounev S. Why is it not solved yet.

Proceedings of the 2022 ACM/SPEC on International Conference on Performance Engineering. 2022.
4. Shen Z., Subbiah S., Gu X., Wilkes J., Cloudscale: Elastic resource scaling for multi-tenant cloud systems.

Proceedings of the 2nd ACM Symposium on Cloud Computing. 2011.
5. Iqbal W., Dailey M. N., Carrera D., і Janecek P. Adaptive resource provisioning for read intensive multi-

tier applications in the cloud. Future Generation Computer Systems. № 27. 2011. P. 871–879.
6. Ali-Eldin A., Kihl M., Tordsson J., Elmroth E. Efficient provisioning of bursty scientific workloads on the

cloud using adaptive elasticity control. Proceedings of the 3rd workshop on Scientific Cloud Computing Date -
ScienceCloud ’12. 2012. New York. P. 31.

7. Ali-Eldin A., Tordsson J., Elmroth E. (2012) An adaptive hybrid elasticity controller for cloud infrastructures.
Network Operations and Management Symposium (NOMS). 2012. P. 204–212.

8. Lorido-Botran T., Miguel-Alonso J., Lozano J. A. A Review of Auto-scaling Techniques for Elastic
Applications in Cloud Environments. Journal of Grid Computing. 2014. Вип. 12. №4. P. 559–592.

9. Qu C., Calheiros R. N., Buyya R. Auto-Scaling Web Applications in Clouds. ACM Computing Surveys.
2018. Вип. 51. № 4. P. 1–33.

10. Taylor S. J., Letham B. Forecasting at scale. PeerJ. URL: https://doi.org/10.7287/peerj.preprints.3190v2
(date visited: 25.09.2023).

11. Deployment Controllers. Kubernetes Documentation. URL: https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/. (date visited: 25.09.2023).

12. Horizontal Pod Autoscaler. Kubernetes Documentation. URL: https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/. (date visited: 25.09.2023).

13. Minikube Documentation. URL: https://minikube.sigs.k8s.io/docs/. (date visited: 25.09.2023).
14. Locust. Locust GitHub Repository. URL: https://github.com/locustio/locust. (date visited: 25.09.2023).

Омельченко В.В., Ролік О.І. ІНТЕГРАЦІЯ ПРОАКТИВНОГО І РЕАКТИВНОГО ПІДХОДІВ
ДО МАСШТАБУВАННЯ В KUBERNETES

Робота присвячена розробці методу інтеграції проактивного і реактивного підходів для
автоматизація процесу масштабування обчислювальних ресурсів у кластері Kubernetes. Проактивний
підхід дозволяє завчасно масштабувати ресурси кластеру і звільняти їх лише після проходження
піку навантаження, що зменшує ризик погіршення якості обслуговування і значно зменшує збиткове
резервування ресурсів. Проте, головним недоліком такого методу є неможливість адаптації до
аномальних навантажень безпосередньо під час роботи. Хоча реактивний підхід і є менш ефективним

Том 34 (73) № 5 2023198

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

в типових ситуаціях, при аномальних навантаженнях продовжує функціонувати в стандартному
режимі. Тому гібридний підхід – який включає реактивну і проактивну складові – дозволить ефективно
розподіляти ресурси при типових навантаженнях і продовжувати функціонування в аномальних
умовах. В роботі розглядається рішення для автоматичного горизонтально масштабування, яке
включає розроблений проактивний компонент в поєднанні з існуючим рішенням для реактивного
горизонтального масштабування в Kubernetes, а саме Horizontal Pod Autoscaler. В даній роботі
проаналізовано проблеми, які можуть виникнути при розробці гібридних рішень, зокрема, проблема
визначення моменту перемикання між компонентами та наводяться можливі варіанти їх вирішення.
В статті проводяться експерименти для перевірки розробленого рішення. Перше дослідження показує
здатність переходити до проактивного управління, якщо необхідна точність передбачень отримана.
Також даний експеримент дозволяє порівняти проактивний і реактивний підхід між собою в контексті
якості обслуговування та збиткового резервування ресурсів. Друге дослідження демонструє здатність
визначати аномальне навантаження і вмикати реактивний компонент. Також оцінюється швидкість
реагування на виникнення аномалій і загальний вплив на показники якості обслуговування.

Ключові слова: динамічне управління обчислювальними ресурсами, проактивне масштабування,
реактивне масштабування, Kubernetes, Horizontal Pod Autoscaler.

